Home | Contact | Sitemap | 中文 | CAS
About Us Research People International Cooperation News Education & Training Join Us Journals Papers Resources Links
Location: Home > News > Seminars
  • Events
  • Seminars
  • Research Trends
  • Gas inflow patterns and nuclear rings in barred galaxies


    Seminar Title  

    Gas inflow patterns and nuclear rings in barred galaxies

    Speaker:  Dr.SHEN Juntai


    (Shanghai Astronomical Observatory)  

    When Friday afternoon , Mar. 17, 14:30 p.m


    Room 212, Astronomy Building. (NJU)

                             Welcome to Attend   

      ( PMO Academic Committee & Academic Circulating committee)

       Abstract: Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear rings are tightly correlated with galactic properties, such as the barpattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear rings to measure the parameters of real barred galaxies with detailed gas kinematics. I will also discuss the preliminary results of extending current hydrodynamical simulations to the Milky Way. 

    Copyright © Purple Mountain Observatory, CAS, No.8 Yuanhua Road, Qixia District, Nanjing 210034, China
    Phone: 0086 25 8333 2000 Fax: 8333 2091 http://english.pmo.cas.cn