Home | Contact | Sitemap | 中文 | CAS
Search:
About Us Research People International Cooperation News Education & Training Join Us Journals Papers Resources Links
Location: Home > News > Seminars
News
  • Events
  • DAMPE
  • Seminars
  • Research Trends
  • Formation of Isothermal Disks around Protoplanets

     

      

    Seminar Title 

    Formation of Isothermal Disks around Protoplanets.

      Introductory Three-dimensional Global Simulations for Sub-Neptune-mass protoplanets.

    Speaker:  

    Prof.BU Defu

       

     Affiliation:   

      (Shanghai Astronomical Observatory) 

       

    When:  

    Tuesday afternoon , Oct. 21st, 14:00 p.m
       

    Where:  

     ( No.212 Lecture Hall, Astronomy Building, Nanjing University xianlin campus,)
     
       

    Welcome to Attend  

     
      ( PMO Academic Committee & Academic Circulating committee)
     

        Abstract      

     The regular satellites found around Neptune (≈17 M ⊕) and Uranus (≈14.5 M ⊕) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets (<17 M ⊕). These disks have been shown to be cool, optically thin, and quiescent, with low surface densities and low viscosities. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for Uranus. The protoplanetary gas accretes onto the circumplanetary disk vertically from high altitude and returns to the protoplanetary disk again near the midplane. This implies an open system in which the circumplanetary disk constantly exchanges angular momentum and material with its surrounding prenatal protoplanetary gas.

    Copyright? Purple Mountain Observatory, CAS, No.10 Yuanhua Road, Qixia District, Nanjing 210023, China
    Phone: 0086 25 8333 2000 Fax: 8333 2091 http://english.pmo.cas.cn