This image of Type Ia Supernova Remnant 0509-67.5 was made by combining data from two of NASA’s Great Observatories. The result shows soft green and blue hues of heated material from the X-ray data surrounded by the glowing pink optical shell, which shows the ambient gas being shocked by the expanding blast wave from the supernova. Credit: NASA, ESA, and B. Schaefer and A. Pagnotta (Louisiana State University, Baton Rouge); Image Credit: NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), J. Hughes (Rutgers University)
Based on previous observations from ground-based telescopes, astronomers knew the supernova class, called a Type Ia, created a remnant named SNR 0509-67.5, which lies 170,000 light-years away in the Large Magellanic Cloud galaxy.
Theoretically, this kind of supernova explosion is caused by a star spilling material onto a white dwarf companion, the compact remnant of a normal star, until it sets off one of the most powerful explosions in the universe.
Astronomers failed to find any remnant of the companion star, however, and concluded that the common scenario did not apply in this case, although it is still a viable theory for other Type Ia supernovae.
"We know Hubble has the sensitivity necessary to detect the faintest white dwarf remnants that could have caused such explosions," said lead investigator Bradley Schaefer of Louisiana State University (LSU) in Baton Rouge. "The logic here is the same as the famous quote from Sherlock Holmes: 'when you have eliminated the impossible, whatever remains, however improbable, must be the truth.'"
The cause of SNR 0509-67.5 can be explained best by two tightly orbiting white dwarf stars spiraling closer and closer until they collided and exploded.
For four decades, the search for Type Ia supernovae progenitors has been a key question in astrophysics. The problem has taken on special importance during the last decade with Type Ia supernovae being the premier tools for measuring the accelerating universe.
Type Ia supernovae release tremendous energy, in which the light produced is often brighter than an entire galaxy of stars. The problem has been to identify the type of star system that pushes the white dwarf's mass over the edge and triggers this type of explosion. Many possibilities have been suggested, but most require that a companion star near the exploding white dwarf be left behind after the explosion.
Therefore, a possible way to distinguish between the various progenitor models has been to look deep in the center of an old supernova remnant to search for the ex-companion star.
In 2010, Schaefer and Ashley Pagnotta of LSU were preparing a proposal to look for any faint ex-companion stars in the center of four supernova remnants in the Large Magellanic Cloud when they discovered the Hubble Space Telescope already had taken the desired image of one of their target remnants, SNR 0509-67.5, for the Hubble Heritage program, which collects images of especially photogenic astronomical targets.
In analyzing the central region, they found it to be completely empty of stars down to the limit of the faintest objects Hubble can detect in the photos. Schaefer suggests the best explanation left is the so-called "double degenerate model" in which two white dwarfs collide.
The results are being reported today at the meeting of the American Astronomical Society in Austin, Texas. A paper on the results will be published in the Jan. 12 issue of the journal Nature.
There are no recorded observations of the star exploding. However, researchers at the Space Telescope Science Institute in Baltimore, Md. have identified light from the supernova that was reflected off of interstellar dust, delaying its arrival at Earth by 400 years. This delay, called a light echo of the supernova explosion also allowed the astronomers to measure the spectral signature of the light from the explosion. By virtue of the color signature, astronomers were able to deduce it was a Type Ia supernova.
Because the remnant appears as a nice symmetric shell or bubble, the geometric center can be determined accurately. These properties make SNR 0509-67.5 an ideal target to search for ex-companions. The young age also means that any surviving stars have not moved far from the site of the explosion.
The team plans to look at other supernova remnants in the Large Magellenic Cloud to further test their observations.
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.
|